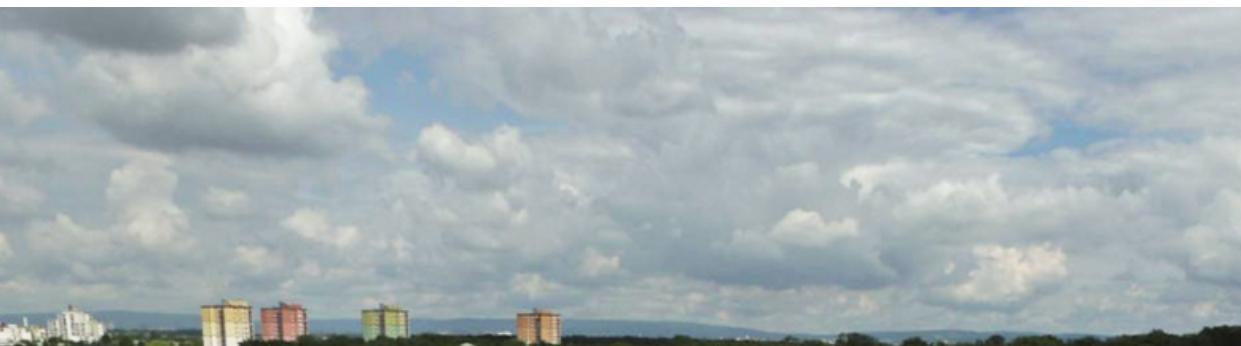


# ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804


|                          |                                      |
|--------------------------|--------------------------------------|
| Owner of the Declaration | <b>JACKON Insulation GmbH</b>        |
| Programme holder         | Institut Bauen und Umwelt e.V. (IBU) |
| Publisher                | Institut Bauen und Umwelt e.V. (IBU) |
| Declaration number       | EPD-JAI-20150249-IBC1-EN             |
| Issue date               | 15.09.2015                           |
| Valid to                 | 14.09.2020                           |

JACKODUR Plus - Extruded Polystyrene (XPS)

with HFO 1234ze and alternative flame retardant

**JACKON Insulation GmbH**

[www.bau-umwelt.com](http://www.bau-umwelt.com) / <https://epd-online.com>



## 1. General Information

### JACKON Insulation GmbH

#### Programme holder

IBU - Institut Bauen und Umwelt e.V.  
Panoramastr. 1  
10178 Berlin  
Germany

#### Declaration number

EPD-JAI-20150249-IBC1-EN

#### This Declaration is based on the Product

##### Category Rules:

Insulating materials made of foam plastics, 07.2014  
(PCR tested and approved by the SVR)

#### Issue date

15.09.2015

#### Valid to

14.09.2020

Prof. Dr.-Ing. Horst J. Bossenmayer  
(President of Institut Bauen und Umwelt e.V.)

Dr. Burkhardt Lehmann  
(Managing Director IBU)

### XPS insulation panel JACKODUR Plus

#### Owner of the Declaration

JACKON Insulation GmbH  
Carl-Benz-Str. 8  
33803 Steinhagen  
Germany

#### Declared product / Declared unit

JACKODUR Plus (extruded polystyrene foam) boards produced by JACKON Insulation GmbH. The EPD applies to 1 m<sup>2</sup> of 100 mm thick XPS board, i.e. 0.1 m<sup>3</sup>, with an average density of 38.4 kg/m<sup>3</sup>.

#### Scope:

JACKON Insulation as data provider produces the extruded polystyrene foam boards JACKODUR Plus containing HFO 1234ze as blowing agent and alternative flame retardant. The data have been provided by one factory in Arendsee/Germany for the year 2014.

The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

#### Verification

The CEN Norm /EN 15804/ serves as the core PCR

Independent verification of the declaration  
according to /ISO 14025/

internally  externally

Prof. Dr. Birgit Grah  
(Independent verifier appointed by SVR)

## 2. Product

### 2.1 Product description

JACKODUR Plus is an extruded polystyrene foam (XPS) produced according to /EN 13164/ and available in board shape with a density range from 30 to 50 kg/m<sup>3</sup>, 38.4 kg/m<sup>3</sup> in average (measured). It has specifically low values of thermal conductivity by using HFO1234 ze as blowing agent.

The boards can be delivered in various compressive strength values from 300 to 700 kPa. To meet the need of various applications the boards are produced with different surfaces: with the extrusion skin, planed, grooved or with thermal embossing. JACKODUR Plus boards are supplied with different edge treatments such as butt edge, ship lap and tongue and groove. The EPD is related to an unlaminated product only; lamination and additional product treatment are not considered.

### 2.2 Application

The variety of the performance properties of JACKODUR Plus make it suitable for use in a large number of applications such as: perimeter insulation, inverted roof insulation, insulation of pitched roofs, floor insulation including insulation of highly loaded industrial floors, insulation of thermal bridges for exterior walls, External Thermal Insulation Composite

Systems (ETICS), insulation of cavity walls, agricultural building ceiling insulation, prefabricated elements e.g. building sandwich panels, insulation for building equipment and industrial installations (pipe sections, ...).

### 2.3 Technical Data

Acoustic properties are not relevant for JACKODUR Plus.

#### Constructional data

| Name                                                                                 | Value         | Unit              |
|--------------------------------------------------------------------------------------|---------------|-------------------|
| Gross density                                                                        | 30 - 50       | kg/m <sup>3</sup> |
| Calculation value for thermal conductivity acc. to /EN 12667/ and /EN 13164/ Annex C | 0.025 - 0.027 | W/(mK)            |
| Water vapour diffusion resistance factor acc. to /EN 12086/                          | 50 - 250      | -                 |
| Water absorption after diffusion acc. to /EN 12088/                                  | 3 - 5         | Vol.-%            |
| Deformation under compressive load and temperature acc. to /EN 1605/                 | ≤ 5           | %                 |
| Compressive stress or strength at 10% deflection acc. to /EN 826/                    | 300 - 700     | kPa               |

|                                                                    |               |        |
|--------------------------------------------------------------------|---------------|--------|
| Compressive modulus of elasticity acc. to /EN 826/                 | 10000 - 40000 | kPa    |
| Tensile strength perpendicular to faces acc. to /EN 1607/          | 100 - 400     | kPa    |
| Compressive creep/long-term compressive strength acc. to /EN 1606/ | < 250         | kPa    |
| Freeze-thaw resistance acc. to /EN 12091/                          | ≤ 1           | Vol.-% |
| Dimensional stability acc. to /EN 1604/                            | ≤ 5           | %      |

## 2.4 Placing on the market / Application rules

For the placing on the market in the EU/EFTA (with the exception of Switzerland) the Regulation No 305/2011 applies. The products need a Declaration of Performance taking into consideration /EN 13164:2012+A1:2015 Thermal insulation products for buildings - Factory made extruded polystyrene foam (XPS) products - Specification/ and the CE marking. For the application and use the respective national provisions apply. JACKODUR Plus is additionally approved for use in specific applications under mandatory or voluntary agreement or certification schemes at the national level. This product is controlled and certified by Notified Bodies, e.g. MPA Dortmund.

## 2.5 Delivery status

Length: 1000-3000 mm; Width: 600-1200 mm; Thickness: 20-320 mm For the LCA a thickness of 100 mm was considered.

## 2.6 Base materials / Ancillary materials

JACKODUR Plus is mostly made of polystyrene (90 to 95% by weight in final product – CAS 9003-53-6), blown with fluorinated olefin (HFO1234ze), carbon dioxide (CAS 124-38-9) and halogen-free co-blown agents altogether up to 8.5% by weight in relation to the material input. The blowing agents are partly emitted during the production process. The emissions are considered in module A1-A3.

| Basic material                        | Mass portion |
|---------------------------------------|--------------|
| Polystyrene                           | 90 – 91 %    |
| Blowing agents                        | 8,5 %        |
| HFO 1234ze                            | ~ 70 %       |
| CO <sub>2</sub> , and Co-blown agents | ~ 30 %       |
| Flame retardant                       | 1 - 2 %      |
| Additives (e. g. pigments)            | < 0,5 %      |

The alternative flame retardant is used to enable the foam to meet fire performance standards. The foam no longer contains Hexabromocyclododecane (HBCD; CAS 25637-99-4) nor any other /REACH/ SVHC. Other additives are used, e. g. color pigments and processing aids in minor quantity, less than 0.5%. Polystyrene is produced from oil and gas. Therefore it is linked to the availability of these raw materials. Polystyrene is transported by road.

## 2.7 Manufacture

JACKODUR Plus is produced by a continuous extrusion process using electricity as the main power source: polystyrene granules are melted in an extruder and a blowing agent is injected into the extruder under high pressure.

The drop in pressure at the exit die causes the polystyrene to foam into a board with homogeneous and closed cell structure. Then the boards' edges are trimmed, and the product is cut to dimensions. The smooth foam skin resulting from the extrusion process remains on the boards or is removed mechanically for particular board types to achieve better adhesive strength in combination with e. g. concrete, mortar, or construction adhesives. Some boards receive special surface patterns or grooves. JACKODUR Plus foams off-grade material or scrap from production is recycled in the production process of XPS.

The manufacturing plant in Arendsee/Germany is certified according to /ISO 9001/ and /ISO 50001/

## 2.8 Environment and health during manufacturing

No further health protection measures beyond the regulated measures for manufacturing firms are necessary during all production steps. The manufacturing plant in Arendsee/Germany is certified according to /ISO 14001/.

## 2.9 Product processing/Installation

Handling recommendations for JACKODUR Plus can be found in product and application literature, brochures and data sheets provided directly by suppliers or available from the internet. There are no special required instructions regarding personal precautions and environmental protection during the product handling and installation.

## 2.10 Packaging

The polyethylene-based packaging film is recyclable and actually recycled in those countries having a return system.

## 2.11 Condition of use

Usually maintenance will not be required, if JACKODUR Plus is installed according to handling installation requirements (see: Installation description, [www.jackson-insulation.com/services/verarbeitungshinweise/](http://www.jackson-insulation.com/services/verarbeitungshinweise/)).

## 2.12 Environment and health during use

JACKODUR Plus is in most applications not in direct contact with the environment nor with the indoor air. There is no significant release of substances from the product as installed during its service life, as confirmed by the best possible ratings obtained in existing VOC emission schemes; e. g. /AgBB/.

## 2.13 Reference service life

The durability of JACKODUR Plus is normally at least as long as the lifetime of the building in which it is used. This is explained by the superior mechanical and water resistance properties of these products.

## 2.14 Extraordinary effects

### Fire

JACKODUR Plus achieves the fire classification Euroclass E according to /EN 13501-1/. If the contact with the external flame stops, neither further burning nor smouldering can be observed. Ignition of the foam

can only be observed after longer small flame exposures.

#### Fire performance

| Name                    | Value |
|-------------------------|-------|
| Building material class | E     |

#### Water

Water pick-up by capillarity does generally not occur with XPS foams due to their closed cell structure. The thermal insulation performance of JACKODUR Plus is practically not affected by exposure to water or water vapour.

#### Mechanical destruction

Not relevant for JACKODUR Plus that have superior mechanical properties.

#### 2.15 Re-use phase

In order to maximize the potential to re-use JACKODUR Plus boards, one must avoid that it is damaged or glued. Instead separation layers between the insulation and the concrete should be used or mechanical fixation should be applied.

In the inverted roof application JACKODUR Plus is installed loose laid and therefore can be easily

removed and reused on another roof. For existing conventional flat-roofs JACKODUR Plus can stay in place when for example the existing roof construction is thermally upgraded as a Plus-roof. Recovered JACKODUR Plus from mechanically fixed applications can be reused for insulation of basement walls and foundations.

Due to the high calorific value of polystyrene, energy embedded in JACKODUR Plus can be recovered in municipal waste incinerators equipped with energy recovery units for steam and electricity generation and district heating.

#### 2.16 Disposal

JACKODUR Plus that cannot be easily retrieved from the building is usually landfilled. The material is assigned to the waste category: 17 06 04 insulation materials other than those mentioned in 17 06 01 (insulation materials containing asbestos) and 17 06 03 (other insulation materials consisting of or containing dangerous substances).

#### 2.17 Further information

Additional information can be found at the web page [www.jackon-insulation.com](http://www.jackon-insulation.com).

### 3. LCA: Calculation rules

#### 3.1 Declared Unit

The declared unit is 1 m<sup>2</sup> with a thickness of 100 mm, e. g. 0.1 m<sup>3</sup>.

Corresponding conversion factors are listed in the table below.

#### Declared unit

| Name                                | Value | Unit              |
|-------------------------------------|-------|-------------------|
| Declared unit with thickness 100 mm | 1     | m <sup>2</sup>    |
| Conversion factor to 1 kg           | 0.26  | -                 |
| Gross density                       | 38.4  | kg/m <sup>3</sup> |
| Declared unit                       | 0.1   | m <sup>3</sup>    |

JACKODUR Plus is available in several densities and thicknesses. For a product with a density or thickness different from the reference density of 38.4 kg/m<sup>3</sup> and 100 mm thickness, the environmental impacts may be calculated using the following equation:

$$I_{\text{adap}} = I_{\text{ref}} \times \frac{\rho_{\text{adap}}}{\rho_{\text{ref}}} \times \frac{d_{\text{adap}}}{d_{\text{ref}}}$$

I<sub>adap</sub> – adapted LCIA indicator or LCI parameter  
I<sub>ref</sub> – LCIA indicator or LCI parameter for reference density of 38.4 kg/m<sup>3</sup>

ρ<sub>adap</sub> – adapted density

ρ<sub>ref</sub> – reference density 38.4 kg/m<sup>3</sup>

d<sub>adap</sub> – adapted board thickness

d<sub>ref</sub> – thickness of reference board (100 mm)

Exceptions are impact categories, which are not mainly driven by raw material consumption respective mass. That applies to acidification potential and ozone depletion potential. These two categories do not correlate directly with the mass of the product and cannot be evaluated that way.

#### 3.2 System boundary

Type of EPD: cradle-to-gate (A1 - A3) – with options  
The following modules are considered in the Life Cycle Assessment:

- Raw material supply (A1),
- Transport to manufacturer (A2),
- Manufacturing (A3),
- Transport to construction site (A4)
- Transport to disposal (EoL) (C2),
- Disposal (C4) with two scenarios (landfill (sc. 1) and thermal treatment (sc. 2))
- Reuse, recovery or recycling potential (D) with two scenarios - beyond system boundary.

#### 3.3 Estimates and assumptions

The environmental profile of the flame retardant is based on valid estimations, based on literature data, basically /Ullmanns/.

#### 3.4 Cut-off criteria

In the assessment, all available data from the production process are considered, i.e. all raw materials used, utilised electric power consumption using best available LCI datasets.

The amount of pigments, which underruns a ratio of 0.5 mass-%, is included in the declared mass of polystyrene.

#### 3.5 Background data

Background data is taken from the GaBi software /GaBi 2014/, see [www.gabi-software.com/databases](http://www.gabi-software.com/databases). Additionally a life cycle inventory (LCI) of an existing study on behalf of Honeywell, covering the impacts of the manufacturing process of HFO1234ze blowing agent, has been used. The LCI is based on the ecoinvent database v2-2 (2010). The producing Honeywell facility is located in US. The study has been carried out in 2014.

### 3.6 Data quality

The foreground data, mainly the raw material and energy consumption during the production process is measured data. Most of the necessary life cycle inventories are available in the GaBi database. The last update of the database was 2014.

### 3.7 Period under review

The foreground data collected by JACKON Insulation are based on the yearly production amount and extrapolations of measurements on specific machines and plants. The production data refer to an average of the year 2014 in the JACKON plant Arendsee/Germany.

### 3.8 Allocation

There are no co-products generated during the XPS-production. Allocations in the foreground system are done for waste respective recycling materials only.

#### Allocation for waste materials:

Post-industrial XPS waste from extrusion lines gets directly reused in the process.

In the End of Life scenario all applied incineration processes are displayed via a partial stream consideration for the combustion process, according to the specific composition of the incinerated material.

For the waste incineration plant an R1-value of < 0.6 is assumed.

Environmental burden of the incineration of the product in the EoL-scenario are assigned to the system (C4); resulting benefits for thermal and electrical energy are declared in module D.

Benefits are given according European average data for electrical and thermal energy generated from natural gas.

#### Allocation for upstream data

For all refinery products, allocation by mass and net calorific value has been applied. The manufacturing route of every refinery product is modelled and the product-specific effort associated with their production is calculated.

For other materials' inventory used in the production process calculation the most suitable allocation rules are applied. Information on single LCIs is documented on <http://database-documentation.gabi-software.com/support/gabi/>.

### 3.9 Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

## 4. LCA: Scenarios and additional technical information

The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment if modules are not declared (MND). The values refer to the declared unit of 1 m<sup>2</sup> XPS.

of XPS boards). A waste incineration plant with R1-value < 0.6 is assumed.

#### Transport to the building site (A4)

| Name                                        | Value | Unit              |
|---------------------------------------------|-------|-------------------|
| Payload of truck                            | 5     | t                 |
| Litres of fuel diesel with maximum load     | 0.018 | l/100km           |
| Transport distance                          | 500   | km                |
| Capacity utilisation (including empty runs) | 70    | %                 |
| Gross density of products transported       | 38.4  | kg/m <sup>3</sup> |
| Capacity utilisation volume factor          | 0.29  | -                 |

#### End of life (C1-C4; C2 and C4)

For the End of Life stage two different scenarios are considered. One scenario with 100% landfill (sc. 1) and one scenario with 100% incineration (sc. 2) are calculated. The incineration of XPS results in benefits, beyond the system boundary, for thermal energy and electricity under European conditions.

| Name                                  | Value | Unit |
|---------------------------------------|-------|------|
| Collected separately XPS              | 3.84  | kg   |
| Collected as mixed construction waste | 0     | kg   |
| Reuse                                 | 0     | kg   |
| Recycling                             | 0     | kg   |
| Landfilling Scenario 1                | 3.84  | kg   |
| Energy recovery Scenario 2            | 3.84  | kg   |

#### Reuse, recovery and/or recycling potentials (D), relevant scenario information

Module D includes the benefits beyond system boundaries of the incineration process C4 (incineration

## 5. LCA: Results

The following tables display the environmental relevant results according to /EN 15804/ for 1 m<sup>2</sup> XPS board. The two EoL scenarios are represented in modules C4 and D. C4/1 and D1 reflect the landfilling of XPS, C4/2 and D2 shows the environmental results in case of thermal treatment of XPS-boards.

### DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)

| PRODUCT STAGE       |           | CONSTRUCTION PROCESS STAGE |                                     | USE STAGE |     |             |        |             |               | END OF LIFE STAGE      |                       |                            |           | BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES |          |                                    |  |
|---------------------|-----------|----------------------------|-------------------------------------|-----------|-----|-------------|--------|-------------|---------------|------------------------|-----------------------|----------------------------|-----------|-------------------------------------------------|----------|------------------------------------|--|
| Raw material supply | Transport | Manufacturing              | Transport from the gate to the site | Assembly  | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | De-construction demolition | Transport | Waste processing                                | Disposal | Reuse-Recovery-Recycling-potential |  |
| A1                  | A2        | A3                         | A4                                  | A5        | B1  | B2          | B3     | B4          | B5            | B6                     | B7                    | C1                         | C2        | C3                                              | C4       | D                                  |  |
| X                   | X         | X                          | X                                   | MND       | MND | MND         | MND    | MND         | MND           | MND                    | MND                   | MND                        | X         | MND                                             | X        | X                                  |  |

### RESULTS OF THE LCA - ENVIRONMENTAL IMPACT: 1 m<sup>2</sup> Jackodur Plus XPS board with thickness of 100 mm

| Parameter                                     | Unit | A1-A3   | A4       | C2       | C4/1     | C4/2     | D/1     | D/2      |
|-----------------------------------------------|------|---------|----------|----------|----------|----------|---------|----------|
| GWP [kg CO <sub>2</sub> -Eq.]                 |      | 13.00   | 0.65     | 0.09     | 0.28     | 12.70    | 0.00    | -6.07    |
| ODP [kg CFC11-Eq.]                            |      | 6.34E-7 | 2.65E-12 | 3.89E-13 | 1.19E-11 | 3.32E-11 | 0.00E+0 | -2.07E-9 |
| AP [kg SO <sub>2</sub> -Eq.]                  |      | 8.63E-2 | 1.80E-3  | 2.64E-4  | 8.13E-4  | 7.80E-4  | 0.00E+0 | -1.61E-2 |
| EP [kg (PO <sub>4</sub> ) <sup>3-</sup> -Eq.] |      | 4.48E-3 | 4.46E-4  | 6.57E-5  | 7.57E-4  | 1.55E-4  | 0.00E+0 | -1.09E-3 |
| POCP [kg ethene-Eq.]                          |      | 1.01E-2 | -5.20E-4 | -7.65E-5 | 1.01E-4  | 9.22E-5  | 0.00E+0 | -1.32E-3 |
| ADPE [kg Sb-Eq.]                              |      | 2.33E-5 | 2.53E-8  | 3.72E-9  | 5.37E-8  | 1.71E-7  | 0.00E+0 | -6.10E-7 |
| ADPF [MJ]                                     |      | 339.00  | 8.87     | 1.31     | 4.00     | 1.40     | 0.00    | -85.20   |

Caption GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources

### RESULTS OF THE LCA - RESOURCE USE: 1 m<sup>2</sup> Jackodur Plus XPS board with thickness of 100 mm

| Parameter            | Unit | A1-A3   | A4      | C2      | C4/1    | C4/2    | D/1     | D/2      |
|----------------------|------|---------|---------|---------|---------|---------|---------|----------|
| PERE [MJ]            |      | 12.20   | IND     | IND     | IND     | IND     | IND     | IND      |
| PERM [MJ]            |      | 0.00    | IND     | IND     | IND     | IND     | IND     | IND      |
| PERT [MJ]            |      | 12.20   | 0.50    | 0.07    | 0.24    | 0.16    | 0.00    | -10.40   |
| PENRE [MJ]           |      | 203.00  | IND     | IND     | IND     | IND     | IND     | IND      |
| PENRM [MJ]           |      | 154.00  | IND     | IND     | IND     | IND     | IND     | IND      |
| PENRT [MJ]           |      | 357.00  | 8.90    | 1.31    | 4.18    | 1.63    | 0.00    | -104.00  |
| SM [kg]              |      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     |
| RSF [MJ]             |      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     |
| NRSF [MJ]            |      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     |
| FW [m <sup>3</sup> ] |      | 5.44E-2 | 8.72E-4 | 1.28E-4 | 1.15E-5 | 2.46E-2 | 0.00E+0 | -2.10E-2 |

Caption PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

### RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES:

#### 1 m<sup>2</sup> Jackodur Plus XPS board with thickness of 100 mm

| Parameter | Unit | A1-A3   | A4      | C2      | C4/1    | C4/2    | D/1     | D/2      |
|-----------|------|---------|---------|---------|---------|---------|---------|----------|
| HWD [kg]  |      | 3.56E-5 | 4.22E-6 | 6.21E-7 | 7.81E-7 | 5.00E-6 | 0.00E+0 | -2.98E-5 |
| NHWD [kg] |      | 5.49E-2 | 1.27E-3 | 1.86E-4 | 3.83E+0 | 8.79E-2 | 0.00E+0 | -3.09E-2 |
| RWD [kg]  |      | 5.76E-3 | 1.22E-5 | 1.79E-6 | 6.87E-5 | 9.48E-5 | 0.00E+0 | -7.41E-3 |
| CRU [kg]  |      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | IND     | IND      |
| MFR [kg]  |      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | IND     | IND      |
| MER [kg]  |      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | IND     | IND      |
| EEE [MJ]  |      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 20.50    |
| EET [MJ]  |      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 49.00    |

Caption HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy

## 6. LCA: Interpretation

Regarding the production of Jackodur Plus, polystyrene dominates the impact categories global warming potential (GWP), resource depletion fossil (ADPF) and the corresponding primary energy non

renewable (PENRT) with 57%, 75% and 73% contribution in regard to the production stage. Figure 6-1 illustrates the contributing stages and materials for the impact category GWP.

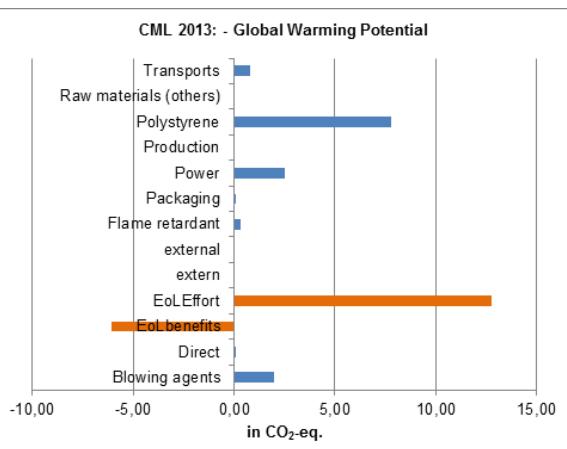



Figure 6-1: Global warming potential of 1 m<sup>2</sup> JACKODUR Plus (Life cycle; EoL scenario 2)

The direct emissions are reasonable marginal regarding GWP, due to the fact that CO<sub>2</sub> as blowing agent is used only in a small amount (0.7% of raw material input) and the co-blowing agent acetone has from the scientific perspective no influence on GWP. Moreover the mainly used halogenated blowing agent has a low GWP factor (<1; /IPCC 2013; pg. 732/) and the emission factor of HFO is low because of its high molecule size.

In opposite resource depletion elements (ADPE), acidification (AP) and ozone depletion potential (ODP) are mainly driven by the production of blowing agents, primarily HFO1234ze, with shares of 78%, 69% and 91%, although this is only used in a small amount in the XPS product with 5.9% of the raw material input. The high contribution of HFO is in parts unexpected and strongly related to the provided Life cycle inventory (LCI) and the used Ecoinvent background data.

Figure 6-2 shows the high dominance of blowing agent for the acidification potential.

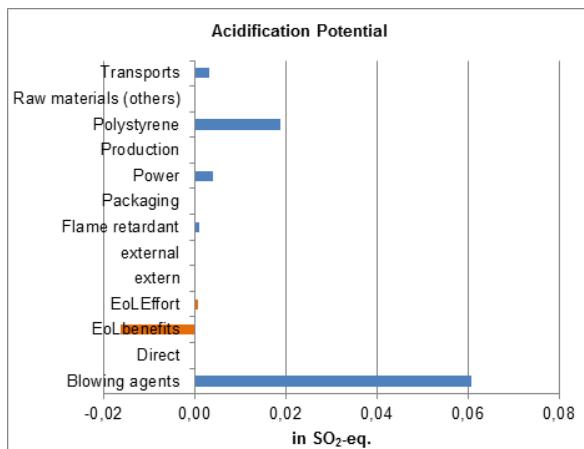



Figure 6-2: Acidification potential of 1 m<sup>2</sup> JACKODUR Plus (LC; scenario 2)

The summer smog potential (POCP) is less related to raw materials. The direct emissions during production generate half of the impact in this category (85% from acetone, 15% from HFO). In addition polystyrene is relevant for POCP with one third contribution, the production of blowing agents with another 25%.

Transport processes and flame retardant production are of low relevance within the considered indicators. Regarding the whole life cycle (LC) with inclusion of the End of Life scenarios, the results differ in a high range between these two scenarios: landfill and incineration with energy recovery. Landfill has low impacts on most of the categories.

The energy recovery from thermal treatment of the used XPS-boards generates a relevant amount of energy. In relation to the XPS production, the incineration process generates about 25% of the needed primary energy. Methodologically this energy can be used in a next product system. The credits thus cannot be added to the needed primary energy for the production of XPS.

Relevant influence of incineration with energy use is also shown for the impact category GWP with 33% impact share, caused by CO<sub>2</sub> emissions during incineration in Figure 6-1 (orange bars).

In opposite to GWP in case of the acidification potential the benefits are higher than the effort for thermal treatment during disposal (EoL). Calculative the acidification is 21% lowered, as visualized in Figure 6-2.

It has to be considered, that environmental impacts during the use phase are not included.

## 7. Requisite evidence

### 7.1 VOC Emissions

XPS products can be used indoor however they are generally not exposed to the indoor air but covered by a finishing element or system.

JACKODUR Plus can be used indoor however it is generally not exposed to the indoor air but covered by a finishing element or system.

The emissions of JACKODUR Plus have been tested by TÜV Rheinland, Germany in March 2015. The emission testing meets the requirements of the AgBB/DIBt method.

JACKODUR Plus complies with the requirements of DIBt (October 2008) and AgBB (May 2010) for the use in the indoor environment.

### VOC Emissions

| Name                                          | Value        | Unit              |
|-----------------------------------------------|--------------|-------------------|
| TVOC (C <sub>6</sub> - C <sub>16</sub> )      | 0 - 1000     | µg/m <sup>3</sup> |
| Sum SVOC (C <sub>16</sub> - C <sub>22</sub> ) | 0 - 100      | µg/m <sup>3</sup> |
| R (dimensionless)                             | 0 - 1        | -                 |
| VOC without NIK                               | 0 - 100      | µg/m <sup>3</sup> |
| Carcinogenic Substances                       | not detected | µg/m <sup>3</sup> |

### 7.2 Leaching performance

Leaching behaviour is not regulated for extruded polystyrene foam products.

## 8. References

### **Institut Bauen und Umwelt**

Institut Bauen und Umwelt e.V., Berlin(pub.):  
Generation of Environmental Product Declarations  
(EPDs);

### **General principles**

for the EPD range of Institut Bauen und Umwelt e.V.  
(IBU), 2013/04  
[www.bau-umwelt.de](http://www.bau-umwelt.de)

### **ISO 14025**

DIN EN ISO 14025:2011-10: Environmental labels and  
declarations — Type III environmental declarations —  
Principles and procedures

### **EN 15804**

EN 15804:2012-04+A1 2013: Sustainability of  
construction works — Environmental Product  
Declarations — Core rules for the product category of  
construction products

### **AgBB**

German Committee for Health-Related Evaluation of  
Building Products, Berlin

### **DIBt**

German Institute for Construction Technology, Berlin  
[www.dibt.de](http://www.dibt.de)

### **TÜV Rheinland, Germany**

Global provider of technical, safety, and certification  
services; headquarter Cologne, Germany  
[www.tuv.com](http://www.tuv.com)

### **PCR 2013, Part A**

PCR - Part A: Calculation rules for the Life Cycle  
Assessment and Requirements on the Background  
Report, Version 1.2, Institut Bauen und Umwelt e.V.,  
2013  
[www.bau-umwelt.com](http://www.bau-umwelt.com)

### **PCR 2013, Part B**

Product category rules for construction products Part  
B: Requirements of the EPD for foam plastic insulation  
materials, version 1.6, 2014  
[www.bau-umwelt.de](http://www.bau-umwelt.de)

### **IPCC 2013**

Climate Change 2013: The Physical Science Basis.  
Contribution of Working Group I to the Fifth  
Assessment Report of the Intergovernmental Panel on  
Climate Change (IPCC), Cambridge University Press,  
Cambridge, United Kingdom and New York, NY, USA

### **ISO 9001**

Quality management systems - Requirements

### **ISO 50001**

Energy management systems – Requirements with  
guidance for use

### **ISO 14001**

Environmental management systems - Requirements  
with guidance for use

### **EN 1604**

EN 1604:2013-05: Thermal insulating products for  
building applications – Determination of dimensional  
stability under specified temperature and humidity  
conditions

### **EN 1605**

EN 1605:2013-05: Thermal insulating products for  
building applications – Determination of deformation  
under specified compressive load and temperature  
conditions

### **EN 1606**

2013-05: Thermal insulating products for building  
applications – Determination of compressive creep

### **EN 1607**

2013-05 Thermal insulating products for building  
applications – Determination of tensile strength  
perpendicular to face

### **EN 12086**

2013-06: Thermal insulation products for building  
applications – Determination of water vapour trans-  
mission properties

### **EN 12088**

2013-06: Thermal insulation products for building  
applications – Determination of long-term water  
absorption by diffusion

### **EN 12091**

2013-06: Thermal insulation products for building  
applications – Determination of freeze-thaw resistance

### **EN 826**

2013-05: Thermal insulation products for building  
applications – Determination of compression behaviour

### **EN 13501-1**

2010-01: Fire classification of construction products  
and building elements - Part 1: Classification using  
data from reaction to fire tests

### **EN 12667**

2001-05: Thermal performance of buildings materials  
and products – Determination of thermal resistance by  
means of guarded hot plate and heat flow meter  
methods - Products of high and medium thermal  
resistance

### **EN 13164**

2013-03, Thermal insulation products for buildings –  
Factory-made extruded polystyrene foam (XPS)  
products – Specification

### **AVV**

Ordinance concerning the European Waste Directory  
(Waste Directory Ordinance - AVV): Waste Directory  
Ordinance dated 10th December 2011 (Federal Legal  
Gazette I p. 3379), which has been modified by Article  
5 Paragraph 22 of the law dated 24th February 2012  
(Federal Legal Gazette. I p. 212).

**GaBi 2014**

GaBi 6 Software and Documentation: Database for integrated balancing. LBP, University of Stuttgart and thinkstep AG (formerly PE INTERNATIONAL), Documentation of GaBi 6 data sets <http://www.gabi-software.com/databases>, 2014

**REACH**

Registration, Evaluation, Authorization and Restriction of Chemical Hazards, 2007

**Ullmanns**

John Wiley & Sons, Inc., ULLMANN'S Encyclopedia of Industrial Chemistry, Hoboken / USA, 2014

**Publisher**

Institut Bauen und Umwelt e.V.  
Panoramastr. 1  
10178 Berlin  
Germany

Tel +49 (0)30 3087748- 0  
Fax +49 (0)30 3087748- 29  
Mail info@bau-umwelt.com  
Web [www.bau-umwelt.com](http://www.bau-umwelt.com)

**Programme holder**

Institut Bauen und Umwelt e.V.  
Panoramastr 1  
10178 Berlin  
Germany

Tel +49 (0)30 - 3087748- 0  
Fax +49 (0)30 – 3087748 - 29  
Mail info@bau-umwelt.com  
Web [www.bau-umwelt.com](http://www.bau-umwelt.com)



thinkstep

**Author of the Life Cycle Assessment**

thinkstep AG  
Hauptstraße 111 - 113  
70771 Leinfelden-Echterdingen  
Germany

Tel +49 711 341817-0  
Fax +49 711 341817-25  
Mail info@thinkstep.com  
Web [www.thinkstep.com](http://www.thinkstep.com)

**Owner of the Declaration**

Jackon Insulation GmbH  
Carl-Benz-Straße 8  
33803 Steinhausen  
Germany

Tel +49(0)5204 9955-0  
Fax +49(0)5204 9955-400  
Mail info@jackodur.com  
Web [www.jackon-insulation.com](http://www.jackon-insulation.com)